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Abstract

A mathematical equation, namely Jouyban–Acree model, for calculating apparent acid dissociation constants (pKa) in hydro-organic
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ixtures with respect to the concentration of organic solvent and temperature is proposed. The correlation ability of the model is ev
mploying pKa values of 17 different acids in water–cosolvent systems. The results show that the model is able to correlate the pKa values with
n overall average percentage differences (APD) of 1.71± 1.86%. In order to test the prediction capability of the model, nine experim
Ka values from each data set have been employed to train the model, then the pKa values at other solvent compositions and tempera
ere predicted and the overall APD obtained is 2.10± 2.42%. The applicability of the extended form of Jouyban–Acree model on pKa data
f analytes in ternary solvent mixtures is also shown.
2004 Elsevier B.V. All rights reserved.
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. Introduction

During the lead optimization phase of drug discovery
tudies, where a large number of molecules are biologically
valuated in parallel, the determination of physico-chemical
roperties is essential to ensure adequate characterization
nd quality of developed candidates[1]. The knowledge of
cid dissociation constants of these new chemical entities is
f fundamental importance in order to provide information

or scientists working on chromatographic separations (re-
ention times and selectivity dependence of mobile phase pH)
2], capillary electrophoresis separations (migration times
r mobilities of the ionic species over a range of pH values)

2], pharmaceutical drug discovery and development[3],
hemical reactivity (selection of conditions for synthesis by
onsidering the effects of pH on reaction products and proper-
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ties of postulated intermediates), salt formation, purifica
process[1] and pharmaceutical formulation development[1].

Experimental measurements of pKa values are expen
sive, difficult, time consuming and limited by purity of co
pounds (almost all experimental methods except cap
electrophoresis)[3], low analyte solubility (in potentiome
try), the range of pH (in high performance liquid chromat
raphy), spectral similarities (in spectrometric methods),
stability of analytes (e.g. chemical reactions intermedia
The most important limitation is that before synthesis
compound, its pKa value cannot be estimated experimenta

Although water is the most common solvent in che
cal/pharmaceutical applications, organic solvents are
as a cosolvent in order to adjust separation selectivity
modify solubility, stability, pKa and other characteristics
the analytes. Temperature plays a significant role in
of the chromatographic and electrophoretic methods a
is recognized as the most relevant parameter in gas
matography. Many separation scientists have traditio
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disregarded temperature effects in liquid chromatography
whereas elevated temperature is a usual controlling vari-
able in reversed phase liquid chromatography. Today pub-
lications stated the reasons for fearing of such methods
and now temperature in combination with pH and cosol-
vent addition are introduced as variables to adjust selec-
tivity towards acidic and basic compounds e.g. see Refs.
[4–6].

Since the pKa value of many compounds is determined
commonly at 25◦C, prediction of pKa at different temper-
atures (e.g. body temperature 37◦C) would be very useful
tool for biological and biomedical applications. Using mixed
solvents in the analytical/pharmaceutical areas is a common
method to optimize solubility and/or separation efficiency.
However, the number of solvent compositions and tempera-
ture combinations is quite large and it is difficult to determine
all possible combinations by experiments. Thus, a good al-
ternative is to use computational methods. The aim of this
work is to present a mathematical treatment of pKa values
as a function of solvent composition and temperature. The
accuracy of the proposed model is assessed by using avail-
able pKa values in mixed solvents at various temperatures
collected from the literature.
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Summation of Eqs.(2)–(4)yields:

µm
H+ + µm

A− − µm
HA

= Xc(µc
H+ + µc

A− − µc
HA) + Xw(µw

H+ + µw
A− − µw

HA)

+ (A0 + B0 − C0)XcXw

+ (A1 + B1 − C1)XcXw(Xc − Xw) (5)

Replacing the corresponding equals from Eq.(1) into Eq.(5)
with appropriate rearrangements give:

2.303Rlog Km,T
a

= Xc(2.303Rlog Kc,T
a ) + Xw(2.303Rlog Kw,T

a )

+ (A0 + B0 − C0)
XcXw

T

+ (A1 + B1 − C1)
XcXw(Xc − Xw)

T
(6)

Since (A0 +B0 −C0), (A1 +B1 −C1) and 2.303Rare constant
values and pKa =−logKa, it is possible to simplify Eq.(6)
as:
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. Theoretical treatment

A dissociation reaction of a monoprotic acid (HA) in
olvent can be represented as:

A ↔ H+ + A−, Ka = aH+ · aA−

aHA

herea is the activity of the chemical species. The logari
f Ka expressed as:

.303RT log Ka = µH+ + µA− − µHA (1)

hereµ denotes chemical potential of the species.
The chemical potential in aqueous cosolvent mixtures

e expressed as the mole fractions of the cosolvents:

m
H+ = Xcµc

H+ + Xwµw
H+ + A0X

cXw

+ A1X
cXw(Xc − Xw) (2)

m
A− = Xcµc

A− + Xwµw
A− + B0X

cXw

+ B1X
cXw(Xc − Xw) (3)

m
HA = Xcµc

HA + Xwµw
HA + C0X

cXw

+ C1X
cXw(Xc − Xw) (4)

here superscripts m, c and w denote mixed solvent,
osolvent and pure water, respectively,X is the mole frac
ion of the solvents, andA, B and C the solute–solven
nd solvent–solvent interaction terms. These terms r
ent the two body and three body interactions in the solu
7].
+W1
T

(7)

hereW0 = (A0 +B0 −C0)/2.303RandW1 = (A1 +B1 −C1)/
.303R. It is obvious that one can use the volume /we

ractions of the solvents instead of the mole fractions[7] and
ewrite Eq.(7) as:

Km,T
a = f c pKc,T

a + f w pKw,T
a + K0

f cfw

T

+ K1
f cfw(f c − f w)

T
(8)

hereK0 andK1 are the curve-fitting parameters. The num
cal values ofK0 andK1 can be computed by fitting the exp
mental values of (pK

m,T
a − f c pK

c,T
a − f w pK

w,T
a ) agains

f cfw

T
and f cfw(f c−fw)

T
by using a no intercept least squ

nalysis.
The general form of the proposed equation can be

ressed as:

Km,T
a = f c pKc,T

a + f w pKw,T
a

+ f cfw
n∑

q=0

Kq(f c − f w)q

T
(9)

he model could possess as many curve-fitting param
s needed for accurate representation of experimental
owever, it is preferred to employ the lowest numbe
urve-fitting parameters, since it requires minimum num
f experimental data in model training process. In some c

he numerical values of pKca are not available. If so, it is po
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sible to rewrite Eq.(8) as:

pKm,T
a = fw pKw,T

a + Jf c + K0
f cfw

T

+ K1
f cfw(f c − f w)

T
(10)

whereJ,K0 andK1 are the model constant. These are com-
puting via fitting (pK

m,T
a − f w pK

w,T
a ) againstfc, f cfw and

f cfw(f c − f w). Eq.(10)can be written as Eq.(11) for cal-
culating pKa values in mixed solvents at a fixed temperature
[7]:

pKm,T
a = fw pKw

a + Mf c + M0f
cfw+M1f

cfw(f c−fw)

(11)

whereM, M0 andM1 are the model constants. Eq.(11) pro-
duced reasonably accurate results for both calculation of pKa
of a single analyte and a number of related analytes in binary
solvents[7]. Eq. (11) can also be extended to calculate pKa
of analytes in ternary solvent mixtures as:

pKm
a = fw pKw

a + f c pKc
a + f s pKs

a + Q0f
wf c

+Q1f
wf c(fw − f c) + Q′
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3. Results and discussion

In order to evaluate the accuracy of the proposed model,
available pKa values in different concentrations of the organic
solvents at various temperatures including more than 15 data
points were collected from the literature. The details of the
collected data including the solute, the cosolvent, the number
of experimental data points in each set, the temperature range
and the references are listed inTable 1.

To evaluate the correlation ability of the Jouyban–Acree
model, all data points in each set have been fitted to Eq.
(9) with q= 0, 1 and 2, and the back calculated pKa values
have been used to compute APDs. This numerical method
has been called correlative analysis and the results are shown
in Table 1. The overall APD and the standard deviations for
q= 0, 1, and 2 are 1.71± 1.86, 1.26± 1.30 and 0.99± 0.85,
respectively. There is no significant differences in the overall
APD betweenq= 0 andq= 1 or betweenq= 1 and 2 (paired
t-test,P> 0.07). Therefore, Eq.(9) with q= 0 is selected as
appropriate version of the model. For Eq.(9)possessing three
constant terms (i.e. pK

w,T
a , J andK0), the least APD value

(0.27%) has been observed for eriochrome blackT in water-
ethanol and the highest APD value (4.98%) has been observed
for maleic acid in water–ethanol mixtures. The IPD values
produced by correlative analysis of Eq.(11)with q= 0 sorted
in three subgroups, i.e. IPD≤ 2, 2–4 and >4% are illustrated
i IPD
i dard
d

cted
v l pK
v d
t em-
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d rved
f lue
( s.
T s
t sis.
A ighest
r

F ctive
a

+Q1f f (f − f ) + Q0f f

+Q′′
1f

cf s(f c − f s) + Q′′′
0 fwf cf s

+Q′′′
1 fwf cf s(fw − f c − f s) (12)

here superscript s denote the second cosolvent, andQ terms
re the model constants. If the numerical values of pKa of an-
lytes in pure solvents (e.g. pKc

a or pKs
a) are not available,

s possible to consider them as constant terms. The othe
ions of Eq.(9)have been successfully applied for calcula
f solute solubilities in mixed solvents at various temp

ures[8], dielectric constants[9] and also surface tensio
10] of liquid mixtures. The model could be considered
irical in nature, however, it produces accurate calcula
nd has its position in data modeling of physico-chem
roperties in mixed solvents.

To assess the accuracy of the proposed equations, the
ge percentage differences (APD) between experimenta
alculated pKa values are considered as an accuracy crite

PD =
(

100

N

) ∑ ∣∣∣∣∣
pKcalculated

a − pKobserved
a

pKobserved
a

∣∣∣∣∣
hereN denotes the number of experimental data poin
ach set. The individual percentage difference (IPD) is
ulated by:

PD = 100

∣∣∣∣∣
pKcalculated

a − pKobserved
a

pKobserved
a

∣∣∣∣∣
-

n Fig. 1. As seen in more than 75% of the cases the
s less than 2% whereas the experimental relative stan
eviation for repeated experiments is up to 20%[3].

In order to evaluate the prediction capability of the sele
ersion of the Jouyban–Acree model, nine experimentaa
alues (high, low and mediumT, f c andfw) have been use
o train the model and then the trained models are then
loyed to predict the pKa values of remainder points in ea
ata set. The minimum prediction APD (0.19%) is obse

or adipic acid in water–methanol and the maximum va
9.12%) for pKa2 of tartaric acid in water–ethanol mixture
he overall APD obtained is 2.10± 2.42%.Fig. 1also show

he relative frequency of IPD values for predictive analy
s expected, error percentage less than 2% shows the h

elative frequency.

ig. 1. Relative frequency of IPD values for correlative and predi
nalyses.
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Table 1
Details of the systems studied and the average percentage deviation (APD) for correlative and predictive analyses

No. Solute Cosolvent Temperature (◦C) Reference Na Correlative Predictive,
q= 0b

q= 0 q= 1 q= 2

1 Adipic acid, pKa1 Methanol 30–60 [14] 16 0.35 0.35 0.35 0.53
2 Adipic acid, pKa2 Methanol 30–60 [14] 16 2.07 2.07 2.07 2.53
3 EBBc, pKa1 Dimethylformamide 20–40 [15] 26 0.55 0.49 0.42 0.64
4 EBBc, pKa2 Dimethylformamide 20–40 [15] 26 0.48 0.44 0.41 0.57
5 EBBc, pKa1 Ethanol 20–45 [15] 30 0.53 0.53 0.52 0.63
6 EBBc, pKa2 Ethanol 20–45 [15] 30 0.44 0.43 0.40 0.49
7 EBTd, pKa1 Ethanol 20–40 [15] 25 0.27 0.22 0.22 0.3
8 EBTd, pKa2 Ethanol 20–40 [15] 25 0.47 0.42 0.39 0.49
9 Maleic acid, pKa1 Ethanol 30–55 [16] 36 4.98 4.77 3.05 5.63

10 Maleic acid, pKa2 Ethanol 30–55 [16] 36 1.91 1.70 1.62 2.22
11 Phthalic acid, pKa1 Ethanol 30–55 [16] 36 1.55 1.40 1.30 2.56
12 Phthalic acid, pKa2 Ethanol 30–55 [16] 36 1.24 1.15 1.08 1.37
13 PANe Ethanol 20–30 [17] 33 4.94 1.37 1.15 5.12
14 Tartric acid, pKa1 Ethanol 30–55 [16] 36 1.68 1.06 0.55 1.99
15 Tartric acid, pKa2 Ethanol 30–55 [16] 36 6.21 4.03 2.46 9.12
16 Terazodone Ethanol 15–45 [18] 36 0.71 0.7 0.70 0.66
17 Trisf 2-Methoxyethanol 20–45 [19] 50 0.68 0.32 0.17 1.08

Overall APD
S.D.

1.71± 1.86 1.26± 1.30 0.99± 0.85 2.10± 2.42

a The number of data points in each set.
b APD of predictive analysis using models trained by nine experimental data points. The number of predicted points isN− 9.
c Eriochrome blue black RC.
d Eriochrome black T.
e 1-(2-Pyridylazo)-2-naphthol.
f Tris-(hydroxymethyl) aminomethane.

Four available pKa data sets in ternary solvents at 25◦C
taken from the literature[11] are used to check the appli-
cability of Eq. (12) to reproduce such data. The APDs of
pKa of heptanoic, hexanoic, pentanoic and butanoic acids in
water–methanol–dioxane are 0.41, 0.38, 0.48 and 0.39%, re-
spectively and the overall APD is 0.42%. All data points of
alkanoic acids in water–methanol–dioxane are fitted to Eq.
(12)and the obtained APD is 0.56%. To check the prediction
capability of the model to predict the pKa data, experimen-
tal data of heptanoic and butanoic acids are used to train the
model, and then pKa of hexanoic and pentanoic acids are pre-
dicted. The resulted prediction of APD is 0.51%, which shows
a good predictability of the proposed model. It is obvious that
such data is required in analytical[12] and pharmaceutical
[13] areas where ternary solvents are used for mobile phases
and/or drug formulations. To the best of our knowledge, there
is no published pKa data in ternary solvents at various tem-
peratures to evaluate the accuracy of the proposed model.
However, it is anticipated that the model is able to predict
such data and it could be employed in generating pKa data
in ternary and even higher order multicomponent systems at
various temperatures after training by a minimum number of
experimental data.

In conclusion, the APD value for correlative studies using
17 data sets and employing a three constant term model is
1 ing
t
T t the

proposed model is able to calculate pKa values in binary
solvents at various temperatures within an acceptable er-
ror range. The corresponding values for pKa of analytes in
ternary solvents at a fixed temperature are 0.56 and 0.51%, re-
spectively. It is suggested that employing the proposed mod-
els could help the researchers to speed up the optimization
procedure.
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